REGULAR STRUCTURAL PAPERS

C3A	0.0464 (6)	-0.0168 (5)	0.8582 (5)	0.068 (2)
C4A	0.1004 (6)	-0.0843 (5)	0.9446 (6)	0.059 (2)
C5A	0.2143 (6)	-0.0589 (5)	1.0225 (5)	0.062 (2)
C6A	0.2707 (5)	0.0410 (5)	1.0144 (4)	0.054 (2)
C1 <i>B</i>	0.2462 (5)	0.3118 (4)	0.9931 (4)	0.043 (2)
C2B	0.1719 (5)	0.4015 (4)	0.9479 (4)	0.051 (2)
C3 <i>B</i>	0.1475 (5)	0.4808 (5)	1.0118 (5)	0.059 (2)
C4 <i>B</i>	0.1981 (5)	0.4680 (5)	1.1212 (4)	0.055 (2)
C5B	0.2714 (5)	0.3785 (5)	1.1665 (4)	0.058 (2)
C6B	0.2965 (5)	0.2996 (5)	1.1036 (4)	0.054 (2)
C7	0.2665 (5)	0.2257 (4)	0.9178 (4)	0.044 (2)
N1	0.4003 (4)	0.2221 (4)	0.9338 (4)	0.049 (2)
C8A	0.4376 (5)	0.3385 (5)	0.9126 (5)	0.058 (2)
C8 <i>B</i>	0.4275 (5)	0.1323 (5)	0.8685 (4)	0.055 (2)
C9A	0.5740 (6)	0.3434 (6)	0.9306 (6)	0.092 (3)
C9B	0.3670 (7)	0.1499 (6)	0.7471 (5)	0.095 (3)

Table 2. Geometric parameters (Å, °)

C1A—C2A	1.381 (7)	C6B—C1B	1.387 (7)
C2A-C3A	1.390 (8)	Cl2—C4A	1.737 (7)
C3A—C4A	1.358 (8)	Cl3C4B	1.733 (7)
C4A—C5A	1.385 (7)	C1A—C7	1.510 (8)
C5A-C6A	1.391 (8)	C1 <i>B</i> —C7	1.531 (9)
C6A—C1A	1.387 (7)	N1C7	1.517 (9)
C1B-C2B	1.369 (7)	N1-C8A	1.517 (9)
C2B—C3B	1.387 (9)	N1	1.502 (9)
C3B—C4B	1.374 (7)	C8A-C9A	1.541 (9)
C4B—C5B	1.362 (8)	C8B—C9B	1.531 (8)
C5B—C6B	1.377 (9)		
C1A-C2A-C3A	120.8 (4)	Cl2—C4A—C5A	118.9 (5)
C2A—C3A—C4A	119.5 (5)	Cl3—C4B—C5B	120.4 (5)
C3A—C4A—C5A	121.3 (6)	C2A-C1A-C7	117.4 (4)
C4A—C5A—C6A	118.9 (5)	C6A—C1A—C7	123.4 (4)
C5A-C6A-C1A	120.5 (4)	C2B—C1B—C7	117.8 (5)
C6AC1AC2A	119.0 (5)	C6B—C1B—C7	122.4 (5)
C1B—C2B—C3B	120.5 (5)	C1A-C7-N1	113.0 (5)
C2BC3BC4B	119.3 (5)	C1B—C7—N1	110.6 (5)
C3B—C4B—C5B	120.5 (6)	C1A—C7—C1B	111.9 (6)
C4B—C5B—C6B	120.6 (6)	C7—N1—C8A	108.3 (5)
C5B—C6B—C1B	119.4 (5)	C7—N1—C8B	112.9 (5)
C6B—C1B—C2B	119.7 (6)	C8A-N1-C8B	113.2 (6)
Cl2—C4A—C3A	119.8 (4)	N1	111.8 (5)
Cl3—C4B—C3B	119.1 (4)	N1-C8B-C9B	114.7 (5)

Crystal source: the compound was synthesized according to nonliterature described techniques, by reaction of 4,4'-dichlorobenzhydryl bromide with diethylamine in nitromethane.

One of the authors (VC) was supported by a Fellowship from CICPBA, Argentina. The authors wish to thank E. E. Castellano and the Instituto de Física e Química de Sao Carlos, Universidade de Sao Pablo, Brazil, for providing data-collection facilities, CONICET, Argentina, for financial support, and G. Rigotti and A. Goeta for helpful discussions.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71164 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CD1018]

References

- Barnes, J., Paton, J., Darnewood, J. & Mislow, K. (1981). J. Org. Chem. 46, 4975-4979.
- Bruno Blanch, L. (1990). Doctoral thesis, Univ. Nacional de La Plata, Argentina.

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Goeta, A., Castelletto, V., Punte, G., Rigotti, G., Rivero, B. E., Bruno Blanch, L. & Castellano, E. E. (1991). Ann. Argentine Biophys. Assoc. Meet. Abstracts, p. 30.
- Goeta, A., Punte, G. & Rivero, B. E. (1993). Acta Cryst. C49, 1996– 1998.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Rivero, B. E., Punte, G., Rigotti, G., Goeta, A., Quinteros, Rivero, M. F., Vega, D. & Bruno Blanch, L. (1991). Proc. Am. Crystallogr. Assoc. Meet. p. 23, Abstract 19.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Stiu, G. L., Cachau, R. E., Castro, E. A. & Bruno Blanch, L. E. (1990). *Il Farm.* 45, 889-900.
- Taylor, R. & Kennard, J. (1982). J. Am. Chem. Soc. 104, 5063-5070.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 2000-2002

Structure of Ethyl 2-Cyano-3-(4-methylphenyl)propenoate

HE YOUPING,* SHI JIANQIU AND SU GENBO

Fujian Institute of Research on the Structure of Matter, Academia Sinica, Fuzhou 350002, People's Republic of China

(Received 21 January 1993; accepted 29 April 1993)

Abstract

The dihedral angle between the plane of the 4methylbenzylidene group and the cyanopropenoic acid ethyl ester group is 3.33° . The molecule is nearly planar.

Comment

2-Cyano-3-(2-methoxyphenyl)propenoic acid methyl ester (Nakatani, Hayashi & Hidaka, 1992) crystallizes in a non-centrosymmetric space group and has a large second-harmonic generation (SHG) efficiency. We have synthesized a series of substituted α -cyano cinnamic acid esters. The title compound is one of them, which happens to crystallize in a centrosymmetric space group and therefore has no non-linear optical properties. This has been confirmed by SHG efficiency measurements on a powder sample using the method of Kurtz & Perry (1968).

C(2)

0 3803 (6)

Fig. 1. PLUTO (Motherwell & Clegg, 1978) diagram of the title compound.

Mo $K\alpha$ radiation

Cell parameters from 25

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\mu = 0.77 \text{ mm}^{-1}$

 $0.6 \times 0.5 \times 0.5$ mm

alcohol solution

3 standard reflections

applied)

frequency: 66.67 min

intensity variation: 20%

decrease (correction

Crystal source: grown from

 $\theta = 14 - 15^{\circ}$

T = 296 K

Prismatic

Colorless

 $R_{\rm int} = 0.016$

 $h = -8 \rightarrow 8$

 $l = 0 \rightarrow 12$

 $k = -22 \rightarrow 0$

 $\theta_{\rm max} = 27^{\circ}$

Experimental

Crystal data

C13H13NO2 $M_r = 215.25$ Monoclinic $P2_{1}/c$ a = 6.882 (5) Åb = 17.956 (3) Å c = 9.584 (7) Å $\beta = 96.06^{\circ}$ $V = 1178 (1) \text{ Å}^3$ Z = 4 $D_x = 1.21 \text{ Mg m}^{-3}$ $D_m = 1.214 \text{ Mg m}^{-3}$

Data collection Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: empirical $T_{\rm min} = 0.69, T_{\rm max} = 1.00$ 2879 measured reflections 2803 independent reflections 1211 observed reflections $[l > 3\sigma(l)]$

Refinement

Refinement on F	Unit weights applied
Final R = 0.057	$(\Delta/\sigma)_{\rm max} = 0.003$
wR = 0.067	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.823	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$
1211 reflections	Atomic scattering factors
145 parameters	from Cromer & Waber
H-atom parameters not re-	(1974)
fined	

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

$$B_{\rm eq} = 8\pi^2/3(U_{11} + U_{22} + U_{33}).$$

х	у	z	Beq
1.0824 (5)	-0.0994 (2)	0.5071 (4)	8.18 (9)
1,1179 (4)	-0.2035 (2)	0.6313 (4)	7.59 (9)
0.7791 (6)	-0.2264 (2)	0.8507 (5)	7.5(1)
0 1000 (7)	0.0793 (3)	0.8581 (6)	7.5(1)
0.2736 (6)	0.0407 (3)	0.8083 (5)	5.4 (1)
	<i>x</i> 1.0824 (5) 1.1179 (4) 0.7791 (6) 0.1000 (7) 0.2736 (6)	x y 1.0824 (5) -0.0994 (2) 1.1179 (4) -0.2035 (2) 0.7791 (6) -0.2264 (2) 0.1000 (7) 0.0793 (3) 0.2736 (6) 0.0407 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C(J)	0.5005 (0)	0.0757 (5)	0.7157 (5)	0.1 (1)
C(4)	0.5423 (6)	0.0412 (3)	0.6677 (5)	5.8 (1)
C(5)	0.6006 (6)	-0.0287 (2)	0.7148 (4)	4.73 (9)
C(6)	0.4921 (7)	-0.0640 (3)	0.8087 (5)	6.1 (1)
C(7)	0.3320 (7)	-0.0289 (3)	0.8548 (3)	6.8(1)
C(8)	0.7705 (6)	-0.0606 (2)	0.6562 (4)	5.2 (1)
C(9)	0.8651 (6)	-0.1254 (2)	0.6786 (4)	5.0(1)
C(10)	0.8158 (6)	-0.1814 (2)	0.7738 (5)	5.4 (1)
C(11)	1.0326 (6)	-0.1400 (3)	0.5946 (5)	6.1 (1)
C(12)	1.2830 (8)	-0.2232 (3)	0.5503 (8)	12.1 (2)
C(13)	1.344 (1)	-0.2871 (4)	0.578 (1)	15.3 (3)
	Table 2. B	ond distance	es (Å) and angle	s (°)
O(1)-C	(11)	1.189 (6)	C(4)—C(5)	1.379 (6)
O(2)-C	(11)	1.315 (6)	C(5)—C(6)	1.383 (6)
O(2)-C	(12)	1.485 (7)	C(5)—C(8)	1.467 (6)
N(1)-C	(10)	1.140 (6)	C(6)—C(7)	1.382 (6)
C(1)-C	(2)	1.502 (6)	C(8)—C(9)	1.340 (6)
C(2)-C	(3)	1.376 (6)	C(9)—C(10)	1.422 (7)
C(2)—C(7)		1.373 (6)	C(9)—C(11)	1.497 (6)
C(3)-C	(4)	1.387 (6)	C(12)—C(13)	1.242 (9)
C(11) - C(11) = C(11) - C(11	D(2)—C(12)	114.3 (5)	C(2) - C(7) - C(6)	121.8 (5)
C(1) - C	(2) - C(3)	119.8 (5)	C(5) - C(8) - C(9)	132.2 (4)
C(1) - C	(2)—C(7)	122.1 (5)	C(8) - C(9) - C(10)	124.9 (4)
C(3) = C(2) = C(7)		118.1 (5)	C(8) - C(9) - C(11)	117.0 (5)

0.0757 (3)

0 7137 (5)

6) 9) 5) 4) 4) 5) C(2) - C(3) - C(4)120.6 (5) C(10)-C(9)-C(11) 118.1 (4) N(1)-C(10)-C(9)O(1)-C(11)-O(2)121.1 (5) 179.0 (6) C(3)-C(4)-C(5) 124.5 (5) C(4)-C(5)-C(6) 118.2 (4) C(4) - C(5) - C(8)116.5 (4) O(1)-C(11)-C(9) 124.7 (5) C(6)-C(5)-C(8) O(2) - C(11) - C(9)110.8 (5) 125.2 (4) O(2) - C(12) - C(13)111.6 (7) C(5) - C(6) - C(7)120.1 (5)

The title compound was prepared by condensation of methylbenzaldehyde and ethyl cyanoacetate using piperidine as a catalyst. Data were collected using CONTROL (Molecular Structure Corporation, 1989). The structure was solved by direct methods using MULTAN (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982). H atoms were placed in geometrically calculated positions with C-H = 0.95 Å. All calculations were performed on a MicroVAX 3100 computer using the MolEN (Fair, 1990) program package. Fig. 1 was produced using PLUTO (Motherwell & Clegg, 1978).

Lists of structure factors, anisotropic thermal parameters and H-atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71291 (17 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1046]

References

- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Tables 2.2A and 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.

Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.

- Molecular Structure Corporation (1989). CONTROL. An Automatic Package for Enraf-Nonius CAD-4 Single-Crystal Diffractometers. Delft Instruments X-ray Diffraction, PO Box 811, 2600 AV Delft, The Netherlands.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

61(1)

- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Nakatani, H., Hayashi, H. & Hidaka, T. (1992). Jpn. J. Appl. Phys. 31, 1802-1806.

those of the unsubstituted compound (6.97 Å). The other bond lengths and angles are comparable to those of the unsubstituted compound.

Acta Cryst. (1993). C49, 2002-2003

2,11-Dithia[3.3]metacyclophane-9-carboxylic Acid *tert*-Butyl Ester

BARBARA ALBERT AND MARTIN JANSEN*

Institut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, W-5300 Bonn 1, Germany

RALF GÜTHER AND FRITZ VÖGTLE

Institut für Organische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, W-5300 Bonn 1, Germany

(Received 4 January 1993; accepted 6 May 1993)

Abstract

X-ray structure determination of *tert*-butyl 3,11dithiatricyclo[11.3.1.1^{5,9}]octadeca-1(17),5,7,9(18),13,-15-hexaene-17-carboxylate reveals the molecules adopting a *syn* conformation with the sulfurcontaining bridging chains in a boat-chair arrangement. The *syn*-orientated arene rings are tilted with respect to each other forming a dihedral angle of 22.9 (2)°.

Comment

The structure determination of the title compound was undertaken within the context of investigations on the synthesis, reactivity and conformation of intra-annular substituted cyclophanes (Vögtle, Grütze, Nätscher, Wieder, Weber & Grün, 1975).

In the solid state, there are four separate molecules per unit cell, each of them adopting a *syn* conformation, as seen in the parent compound 2,11dithia[3.3]metacyclophane (Anker, Bushnell & Mitchell, 1979).

A dihedral angle of $22.9 (2)^{\circ}$ between the arene rings indicates a slightly stronger strain compared with the unsubstituted compound (dihedral angle 20.6°). The methylene C atoms attached to the rings are displaced from the arene-ring planes. The intramolecular S...S distance of 6.37 Å is shorter than

©1993 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

Crystal data

C₂₁H₂₄O₂S₂ $M_r = 372.54$ Monoclinic $P2_1/a$ a = 13.317 (5) Å b = 7.624 (1) Å c = 19.965 (8) Å $\beta = 104.15$ (2)° V = 1965.4 (8) Å³ Z = 4 $D_x = 1.26$ Mg m⁻³

Data collection

Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: none 5782 measured reflections 2322 independent reflections 2026 observed reflections $[F_{\sigma} > 3\sigma(F_{o})]$

Refinement

Refinement on F Final R = 0.0558 wR = 0.0510 2026 reflections 229 parameters $w = 1/\sigma^2(F)$ $(\Delta/\sigma)_{max} = 0.003$

Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 25 reflections $\theta = 15-18^{\circ}$ $\mu = 0.237 \text{ mm}^{-1}$ T = 293 KPlate $0.3 \times 0.2 \times 0.2 \text{ mm}$ Colourless

- $R_{int} = 0.0608$ $\theta_{max} = 22^{\circ}$ $h = -14 \rightarrow 14$ $k = 0 \rightarrow 8$ $l = -21 \rightarrow 21$ 2 standard reflections frequency: 60 min intensity variation: none
- $\begin{array}{l} \Delta\rho_{\rm max} = 0.266 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = 0.259 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Atomic \ scattering \ factors} \\ {\rm from \ International \ Tables} \\ {\rm for \ X-ray \ Crystallography} \\ {\rm (1974, \ Vol. \ IV)} \end{array}$